

 WSC2015_TP17_ServerSide_A_EN

TEST PROJECT

Server Side A

Submitted by:

Manuel Schaffner CH

Competition Time:

2 hours

Assessment Browser:

Google Chrome

WSC2015_TP17_ServerSide_A_EN Date: 09.08.15 2 of 7

INTRODUCTION
A friend of yours would like to have a simple online game on his website. He has already prepared the front
end template, but needs some help with the server-side implementation of the interaction logic and
integration into his template.

The game he has chosen is called Tic-Tac-Toe.

DESCRIPTION OF PROJECT AND TASKS
Tic-Tac-Toe is a common single user game. It should suit the following user stories / test cases:

1 As an option he can upload a small photo on the initial page (no game session running or
started before / first time loading the game in that browser session). It is resized to the size of
60x60px and stored on the server's file system

 The player can read the game rules, see the high-scores and start a new game session by
pressing the “Start new game”-button. The button is visible/functional at any time, also during
a running game. A new / initialized game board will then appear on the same page.

 The photo will be used instead of a “default-user”-photo in all games within that browser
session i.e. the photo can only be uploaded once in a browser session – on the initial page –
and will then be used for all game sessions (pressing “Start new game”) instead of the default-
user photo.

 The photo will also be shown as the user’s photo in the high-scores (if the user chooses to
save a high score).

 Accessing the page without an ongoing game session, no game board but the option to
upload a photo will be displayed.

 After a page refresh (F5), the board is still displayed in its last state without re-starting the
game or changing any values (except the game time).

 After the user has won (not lost), a text field to enter a nick name and submit button are
shown. They disappear after pressing the submit-button. The nick name, date (dd/mm/yy),
game time (in seconds; difference of timestamps from pressing “start new game” until
now/winning) and number of moves by user and computer “O:4 - X:3” are saved as high score
on the server and shown in the high score list.

 In a tie-situation there will be no winner and the user can just start a new game if he likes (no
special actions).

 The high scores are displayed all the time, together with the user’s photo (if he has uploaded
one) and they are ordered by date/time (sequence of game sessions, latest/newest on
top/first).

2 The game board consists of a square with nine fields. They are numbered as follows in the
HTML-code provided (field order/numbering not to be changed):

WSC2015_TP17_ServerSide_A_EN Date: 09.08.15 3 of 7

 In a new game, all fields are empty. The player has the first move. The chosen field will be

marked with the “default-user”-photo (or with the uploaded user-photo if available).
 The computer has the next move. He will randomly choose one of the remaining fields and

mark it with an X. The computer has a think time of two seconds (time until game board shows
computer's move).

 If there happen to be three O (default-user-photo resp. uploaded user-photo) or three X in a
vertical, horizontal or diagonal row, the player/computer that did the last move has won and
the game is finished - further interactions with the game board are ignored.

3 The number of current moves and time running that game session (in seconds; difference of
timestamps from pressing “start new game” until now/winning; game time updated after each
interaction) are shown above the game board.

 A message is displayed to inform the player if he has won or lost.
 There should be no PHP-Errors appearing to the user while playing the game

4 Moves are sent to the server by an AJAX-GET request. The response contains JSON
information to update the current game board.

 Data (photo, nick name, state of game,..) is sent to the server by a POST-request and a high-
score/win can not be faked

Your friend would like to publish your code (with your agreement). He might also want to add other games
later, reusing common code (eg. input handling from HTTP GET/POST parameters / AJAX-data, user-
session and game-session handling, photo upload, saving/displaying the high scores,..). Therefore it should
be nicely/modular organized, object oriented using interfaces and classes. Only methods accessed from the
outside should be public.

WSC2015_TP17_ServerSide_A_EN Date: 09.08.15 4 of 7

OTHER
In the following screenshots you can see some of the different states while playing the game.

Initial call of the page (before playing a game, option to upload a photo) – URL remains the same
while playing game sessions:

WSC2015_TP17_ServerSide_A_EN Date: 09.08.15 5 of 7

While playing (player with photo):

WSC2015_TP17_ServerSide_A_EN Date: 09.08.15 6 of 7

After winning (player without photo, option to enter nick name):

The template contains all these three main screens of the game in one file to show how the HTML-
code of the content section will change.

WSC2015_TP17_ServerSide_A_EN Date: 09.08.15 7 of 7

INSTRUCTIONS TO THE COMPETITOR
Save your files in your working directory on the server called "XX_ServerSide_A", where XX is your country
code. Name the file to start the application “index.php” and put it directly into the directory mentioned.

Save all your files to be assessed into a suitable directory structure and naming inside the directory
mentioned above. Save all your work files (those that will/should not be assessed – if any) into a
subdirectory called “work”.

For this module you are not allowed to use any frameworks or implement the logic on the client side
- you need to code from scratch using PHP and MySQL. Applications developed using any
framework will not be considered. Also implementing the game logic on the client side will not be
considered – except for the AJAX request/response-handling.

The template for the frontend is provided and should be modified to integrate the functionality. This should
happen dynamically (e.g. response from server). The application should look and behave (css..) as the
provided template.

Assessment will be done on the files and the data in your database on the central server.

Create a SQL dump of your database and put the *.sql file in a folder “/dbdump” inside the directory
mentioned above (XX_ServerSide_A).

Save the images uploaded by the user in a directory called “/pictures” inside the directory mentioned above
(XX_ServerSide_A).

FILES PROVIDED
ITEM DESCRIPTION

WSC2015_TP17_ServerSide_A_media_template.zip Template files to be used

INTERNET ACCESS

 no internet access

MARKING SCHEME SUMMARY

SECTION CRITERION JUDGEMENT
MARKS

OBJECTIVE
MARKS

TOTAL

G1 Functionality: Gameplay 0 3 3

G2 Functionality: Game
setup & session

0 3.25 3.25

G3 Functionality: Interaction
& Structure

0.5 1.25 1.75

G4 Functionality: Interaction
client-side

0.5 1.5 2

Total 1 9 10

